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Al~tract--The performance of ring electrodes measuring the conductance of gas--liquid mixtures in pipes 
and packed beds is studied experimentally and theoretically. With relatively closely spaced pairs of rings, 
one can detect liquid segregation, i.e. stratified and annular distribution, as well as a uniform liquid 
distribution if the mean liquid fraction is available. Conversely, reliable cross-sectionally-averaged holdup 
data can be obtained if the liquid distribution pattern is known. Measurements in packed beds and pipes 
are qualitatively very similar. Existing theoretical expressions are employed to interpret the conductance 
measurements. Moreover, a new analytical solution for an annular liquid distribution is presented, which 
is particularly helpful in assessing the spatial probe sensitivity in the axial direction. The latter is found 
to be quite satisfactory. In general, agreement between the data and theoretical predictions is fair to 
excellent, providing the necessary confidence for practical applications. Two successful applications of the 
technique to packed beds are reported. 

Key Words: conductance probe, gas-liquid mixture, packed bed, holdup, two-phase flow 

I N T R O D U C T I O N  

Determination of  liquid holdup is of  great importance in a variety of  engineering applications 
involving two- and three-phase systems. The most common technique for determining holdup relies 
on measurements of  electrical impedance between two electrodes, of various configurations, in 
contact with the fluid. The major advantages of  this technique are the simplicity of  application and 
the relatively low cost of  the equipment involved. A comprehensive review of  the method, as applied 
to two-phase gas-liquid flows, was presented by Hewitt (1978), wherein all pertinent literature until 
about  1977 was surveyed. 

In experiments to determine cross-sectionally-averaged holdup values in closed systems (pipes, 
columns etc.) one is usually concerned about the sensitivity of  the technique to the complex 
two-phase flow patterns. To overcome such difficulties, Merilo et al. (1977) employed a conduc- 
tance gauge consisting of  six electrodes flush mounted onto the channel wall. Pairs of  these 
electrodes (opposite each other) are successively energized by "rotat ing" the electric field. 
Averaging the resulting probe signals provides a measure of  the holdup in the cross-section. The 
same type of  gauges were used by Delhaye et al. (1987) and Saiz-Jabardo & Bour6 (1989) in their 
studies of  vertical bubble and slug flow. Matuszkiewicz et aL (1987) employed two square electrodes 
flush mounted on two opposite walls of  a square test section. 

Ring- type  electrodes, covering the entire circumference, are quite convenient for measurements 
in pipes and columns of  circular cross-section. Asali et al. (1985) were the first to employ a pair 
of  parallel ring electrodes for measuring the average liquid film thickness in vertical annular flow. 
For  such thin films, the behavior of  ring probes is very well described by a theory developed by 
Coney (1973) for a pair of  parallel electrodes mounted flush on af la t  wall. Andreussi et al. (1988) 
presented a novel test-section design and further developed ring probes for measuring liquid holdup 
in pipes under various flow conditions. Some aspects of  their work--relevant to this s tudy--are  
discussed in the following sections. The probe configuration developed by Andreussi et al. (1988) 
was also adopted in recent studies of  horizontal and inclined gas-liquid pipe flows (Andreussi & 
Bendiksen 1989; Nydal & Andreussi 1991; Beckmann & Mewes 1991). 
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Electrical impedance techniques have been also employed in two- and three-phase systems 
involving solid particles. For example, Nasr-E1-Din et al. (1987) and Chase et al. (1990) have 
conducted experiments in slurry systems, whereas Turner (1976) and Begovich & Watson (1978) 
have carried out measurements in two- and three-phase fluidized beds, respectively. In the case of 
two-phase flow through packed beds, which is of particular interest to this work, measurements 
with conductance probes were performed in some early studies (Beimesh & Kessler 1971; Prost 
1967). These measurements, taken with relatively small electrodes located in specific radial positions 
in the packing, rendered local holdup values, not necessarily representative of the cross-sectional 
average. To overcome such problems Drinkenburg and co-workers (Blok & Drinkenburg 1982; 
Blok et al. 1983; Rao & Drinkenburg 1983) placed two parallel screens, covering the entire packed 
bed cross-section, at an axial distance from each other. Self-consistent conductance measurements 
under various gas-liquid flow conditions were made. However, the extent to which the screens 
influenced the packing arrangement and, consequently, the flow itself was not evaluated. 

The scope of this work is to explore the use of the ring probe configuration for measurements 
of the instantaneous, cross-sectionally-averaged, liquid fraction in packed beds. In pursuing this 
goal, the performance of ring electrodes in pipes containing gas-liquid mixtures is also carefully 
evaluated. Emphasis is given to studying the influence of geometrical electrode characteristics 
(mainly the separation distance between rings) for some typical gas-liquid distribution patterns. 
The latter comprise the cases of segregated (annular, stratified) and uniformly distributed gas-liquid 
mixtures. 

In the following section, theory pertinent to the technique is briefly reviewed. A new analytical 
solution is also presented for predicting the ring electrode behavior in the case of an annular liquid 
distribution. In the next section, the experimental setup is outlined. A section follows on 
experimental results obtained under various conditions in a pipe and in a packed bed, and a 
comparison is made with theoretical predictions. An overall assessment of the technique is given 
in the final section. 

THEORY 

General Probe Characteristics 

The use of flush mounted probes in two-phase systems is based on electrical potential field theory. 
Coney (1973) and Brown et al. (1978) provide theoretical treatments and performance analyses of 
such probes. As is well known, to suppress undesirable electrode polarization and capacitance 
effects, a sufficiently high frequency a.c. voltage excitation is applied; thus, the measured electrical 
impedance across an electrode pair is essentially resistive. The apparent conductance Kapp, of a 
uniform liquid film of height h, covering a pair of electrodes of length 6, width S and separation 
distance De, is given (Coney 1973) by 

Kapp =_ Ka*pp ¢~-~, [1 ] 

with k(m)  

K*PV = k (1 - m) [2] 

and sinh2(nS ~ 
\ 2 h i  

m =  

where K*pp is a dimensionless conductance derived for two parallel strips of infinite length, 
embedded flush onto aflat surface, and 7 is the liquid conductivity. The function k is the complete 
elliptic integral of the first kind (i.e. Abramowitz & Stegun 1964) and the parameter m is a function 
of the system geometry. 

For circular electrodes covering an entire pipe circumference (6 = gD) and for thin liquid films 
(h--*0, h <<De), [1] reduces to a simple approximate solution: 

reD7 h. [31 
Kapp--'= Dr 
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Hence, for very thin films the conductance between the ring electrodes is directly proportional 
to the product of the film height and the conductivity of the liquid. Experiments carried out by 
Asali et al. (1985) in annular films confirm this observation. Furthermore, Andreussi et al. (1988) 
showed that [3] holds even for thick asymmetric liquid layers, if simply the distance between the 
electrodes is sufficiently large with respect to the film height. An equivalent film height for this 
case is given as 

h A/~ 
reD' [4] 

where A is the pipe cross-sectional area and fl is the volume fraction occupied by the liquid. To 
extend [3] to any separated liquid distribution pattern and to ducts of arbitrary cross-section, 
Andreussi et al. (1988) suggested the use of a generalized equivalent liquid height where ltD is 
replaced by PL, the duct wetted perimeter corresponding to a specific flow pattern. 

To present and compare the experimental data with theory, it is advisable to normalize 
conductance measurements with the conductance of the pipe full of liquid, Km~. Thus, errors in 
the liquid conductivity measurements are eliminated. When packing is present the same equations 
hold. However, in normalizing the apparent probe conductance, one must take into account not 
only the full-pipe conductance but also the effective conductivity of the solid-liquid mixture, 7o- 
The following normalized quantities are thus obtained: 

annular without packing, 

stratified without packing, 

annular with packing, 

and 

stratified with packing, 

Kapp = Ka*p" [5] 
gma x K*ax' 

Kap p K*pp 0 . 
Km~x = K*ax 2n '  [6] 

g a p  p = K*pp 7e . 
- - - - ,  [7] 

Km,x K*~x7 

g a p  p __ K*pp 0 Yc . 
, [8] 

Kma~ Km*ax 2~ 7 

where 0 is the arc corresponding to the wetted perimeter. 
The effective electrical conductivity 7c, is a function of the continuous conducting phase (liquid) 

conductivity and the liquid volume fraction ft. Solid particles and air are the dispersed substances. 
Of the numerous expressions proposed in the literature for computing 3'c, only the following are 
considered here: 

Maxwell (1881), 

Bruggeman (1935), 

and 

~o 2fl 
7 3 - f l '  [91 

)'_~ =//3/2; [10] 
7 

Begovich & Watson (1978), 

7_~ = ft. [111 
7 
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If the liquid phase is uniformly distributed throughout the packing, the normalized conductance is 
obviously equal to the relative conductivity; i.e. 

( K a p p ) d i s  = ~e [12] 
Km~x 

Therefore, it is expected that, in the case of a uniformly distributed liquid, the ratio (Kapp)d~s/Km, x 
will be dependent only on the liquid fraction fl and independent of the ring probe geometric 
characteristics (S, De). 

Analysis of  the Probe Response to a Conducting Annulus 

The geometry considered is depicted in figure 1, where due to cylindrical symmetry only a 
cross-section is drawn. The problem is described by the Laplace equation for the electric potential 
V, with the appropriate boundary conditions: 

W V  = 0 [13] 

0V 
- - = 0 ,  r ' = r ;  [14] 
Or' 

0V 
- - = 0 ,  r ' = R ,  - c ~ < z ' < - 2 ,  - l < z ' < l ,  2 < z ' < c 2 ;  [15] 
Or' 

0V 
- - = 0 ,  z ' = - c l ,  z ' = c 2 ;  [16] 
0z' 

V = Vo, r' = R, l < z ' < 2 ;  [17] 

and 

V= - V0, r ' = R ,  - A < z ' < - l ;  [18] 

where V0 is the electric potential on the probe surface, r is the inner and R the outer radius of the 
annulus; c~, c2 denote the location of the circular bounding surfaces and 2 is defined in figure 1. 
All lengths are made dimensionless with respect to ( D e -  S)/2. A dimensionless conductance is 
defined as follows: 

Ka*PP V o ]~ \Or / ,  2rcRy(De -- S) 

This problem is difficult to tackle (even by numerical methods) due to the discontinuities of the 
boundary conditions on the surface r '  = R. To obtain a physically meaningful analytic solution, 
it is assumed that for electrodes of relatively small width the distribution of current density on their 

I r I 

z I 
rt= 0 

r t= r 

r'= R 
I l I I  

- c 1 -k -1 0 1 ). c2 

2 S  
k =  1 + ( D e .  S) 

Figure I. Geometrical arrangement of two ring electrodes in contact with a conducting annulus of finite 
thickness, h = R - r. 
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surface is uniform. Thus, the original "mixed"-type problem is changed to a Neumann problem, 
where boundary conditions [17] and [18] are substituted by 

2~ aV 
= Q, r' = R, 1 < z '  < 2; [20] 

Dc - S Or" 
and 

2~ 0V 
= - Q ,  r'=R, - 2 < z ' < - l .  [21] 

D, - S Or' 

Here Q is the current density. The conductance is now given as 

2~ v dz '  . [221 

The following analytic solution to the above problem is obtained by the method of separation 
of variables: 

n 3 / 2 - 1 \ 2 / ~  1 \ - i  __ _ _  _ a  2 
K~pp=  2 ~c  I -Jl-c2)~i~=l i 3 ifi) , [23] 

with 

ai = sin[x,(Cl + 2)] - sin[xi(c, + 1)] - sin[xi(c I - 1)] + sin[xi(c, - 2)] [24] 

and 

{ II(tgir)g°(lciR) 

Io(x,R) + K, (lcir)Io(tciR) [25] 
f i=  I,(r.iR) --II(xir)Kl(xiR) " 

Kl (xir )I, (xiR ) 

where I0, K0, I~, K, are modified Bessel functions of the first and second kind (zero and first order) 
and the argument: 

ix 
K i = Cl + C2 

For the fully symmetric problem (Cl--c2 = c), the above solution is simpler: 

K~*p,, = ~ , (2i3 r , [26] 

with 

b, = cos(~,2) - cos(~) and ~, = (2i + 1)____ n ; 
2c 

f~ is of  the same form as in [25] with i t  instead of x~. 
To assess the validity of the assumed uniform current density distribution on the ring electrodes, 

the flat plate problem (two infinite strips, c = oo) is solved under the same assumptions and the 
results are compared with the Coney (1973) solution. The flat plate solution is obtained from [26], 
where 

1 + exp ( -  2~2;h) 
f~ = [27] 

1 - e x p ( -  2~ih) 

and h is the liquid height. A comparison of the accurate Coney solution with the one obtained here 
reveals a relative error of  -,,3% and ~2.5%, for 2 = 1.222 and 2 = 1.105, respectively, for h = oo; 
however, this error tends to decrease with decreasing liquid height. 

In general, the series solution [23] tends to underpredict somewhat the conductance with 
increasing 4. In the latter case the current density at the neighboring electrode edges tends to be 
greater than the average, thus deviating from the uniform distribution. A better approximation can 
be obtained by considering a linear current density distribution p, on each electrode, with p = 0 
at the outer electrode edge: 

p = ~ (4 - z'). [28] 
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The conductance for the symmetric problem is now given by [26] with (bier) instead of (b~) 2 and 

f 1 } _ 2 2b,. + [sin(~i2) - sin(i~)l [291 ei 2 - 1 ~,. " 

Figure 2 shows that this is, indeed, a better approximation for electrodes of relatively large ),. The 
comparison in this figure corresponds to the most unfavorable liquid height (h = oo). 

Results similar to those depicted in figure 2 are obtained in the cylindrical geometry, where the 
linear current density distribution again provides a better approximation. However, for the 
relatively small values of  the parameter 2 which apply to our experimental system (and to most 
systems of practical interest), the uniform current density assumption leads to fairly accurate 
predictions. For  this reason and due to its simplicity, a uniform current density is used in the 
following comparisons of  the experimental data with theory. 

E X P E R I M E N T A L  SETUP AND P R O C E D U R E S  

The test section used in the experiments is a cylindrical column made of transparent Plexiglas. 
The column i.d. = 14 cm and length = 20 cm. The end plates are flanged to the cylinder. A 
schematic of the test section is shown in figure 3. 

The packing material were fairly uniform glass spheres of 6 mm dia, giving an aspect ratio of 
D/dp = 23.3 which is rather typical for packed beds. The column was packed layer by layer to make 
sure that the porosity of the bed was uniform. Each layer was packed by filling it with particles 
and applying uniform pressure at the top. The void fraction of  the bed was determined to be 0.36 
and the bed specific surface area to be 640 m-~. 

The liquid used in this work is tapwater, filtered mechanically to remove suspended particles 
larger than 5 #m. Its specific conductivity varies between approx. 500 and 600 #S/cm. The observed 
scatter can be attributed, only in part, to room temperature fluctuations. However, by continuously 
monitoring conductivity and further reduction to a reference value, this problem is overcome. 

Measurements are made by means of  three parallel stainless steel ring electrodes, located 3 cm 
apart. The ring electrodes have a width of  3 mm. Two conductance probes may be formed: one 
comprised of  two neighboring electrodes (3 cm apart) and the other by combining ring electrodes 
6 cm apart. The electrodes are flush mounted onto the column wall to avoid disturbing the local 
porosity of the bed. 

An a.c. carrier voltage of 25 kHz frequency is applied across each probe pair in order to eliminate 
capacitive impedance. Selection of  the appropriate a.c. frequency value is made by measuring 
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Figure 2. Comparison between solutions for different values 
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Figure 4. Dimensionless apparent  conductivity vs liquid fraction for a stratified liquid distribution. 

impedance magnitude and phase in the test section under various frequencies. An electronic signal 
analyzer converts the probe response to an analog output signal. The analyzer is similar to that 
employed by Karapantsios et al. (1989) and is characterized by high sensitivity and stability. Testing 
and adjustment of the analyzer is necessary before each set of measurements by using precision 
resistors. 

The analog signal from each probe is uniquely related to the conductance of the medium between 
the electrodes. Only one probe is used at a time, while the other is disconnected to avoid electronic 
interference. The analog signal from the analyzer is fed to a digital voltmeter and to an oscilloscope. 

To achieve uniform liquid distribution, dynamic experiments are carried out in a trickle bed 
system. The column height in this system is 124 cm, while the column diameter and the packing 
material are the same as those of the above-mentioned test section. Tests are carried out under 
ambient conditions, with air and water flowing co-currently downwards. Water is sprayed 
uniformly on the top of the packing through a perforated distributor and air is introduced by means 
of another perforated tubular section. Water is supplied in the range 1.483-29.790 kg/m ~ s, while 
the gas flow rate is held constant at 0.055 kg/m ~ s. A long packed entrance section ensures adequate 
mixing of the two phases. The experimental setup for the dynamic experiments is described 
elsewhere (Tsochatzidis & Karabelas 1991). 

Two probes are used in this case, of exactly the same fabrication, as outlined above, comprised 
of rings located 3 and 9 cm apart. The system is operated in the trickling flow regime (characterized 
by low gas and liquid flow rates) to avoid large liquid holdup and consequently conductance 
fluctuations. The dynamic liquid holdup is determined by the "quick-closing valves" technique. 
Fast responding electrically operated valves at the entrance and exit of the column are closed 
simultaneously and the trapped water is collected and weighed, while the signal from the 
conductance probe is recorded simultaneously. 

RESULTS 

Stratified Liquid Pattern 

This liquid distribution pattern is obtained by introducing a known liquid volume into the 
cylindrical test section, lying horizontal. Figure 4(a, b) depicts data of Kapp/Km~ vs liquid fraction, 
taken with two probes of different geometry, for test sections without and with packing, respectively. 
An S-shaped curve is obtained in all cases, which is typical of the non-linear dependence of the 
apparent conductance on  the liquid fraction. It will be pointed out here---as already discussed in 
the Theory section--that in figure 4(a, b), and in all other similar graphs, the conductance has been 
normalized with the maximum achievable conductance (K~ax), i.e. that which corresponds to a test 
section with 100% liquid and no packing. 
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Figure 5. Comparison between data with closely spaced ring electrodes under stratified conditions, 
without and with packing. 

For the case without packing, figure 4(a), the normalized conductance measured with the two 
(geometrically different) probes is practically identical for liquid fractions >0.5. This trend may 
be due to a good averaging of the probe signal, for such large volumes of liquid. For the case with 
packing, figure 4(b), the measurements taken with the two probes deviate systematically, which may 
be partly attributed to packing non-uniformity at the vessel wall, accentuated at small liquid 
fractions. The effect of such non-uniformities may be averaged out in the case of ring electrodes 
spaced relatively far apart. 

In figure 5 a comparison is presented between measurements (with the same probe) without and 
with packing in the test section. The normalized conductivity is plotted vs "liquid saturation" LS, 
defined as 

liquid volume 
LS=  

bed vo lume-  packing volume" 

This coordinate is implicitly dependent on packing voidage. Moreover, there is a correspondence 
between LS and the equivalent liquid height inside the bed, thus allowing direct comparison of the 
conductance data for various bed void fractions. For example, LS - 0.5 corresponds to a half-full 
test section independent of packing voidage. 
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Figure 6. Comparison between theory and experiments under stratified conditions without packing; 
different electrode spacing. (a) S/De = 0.10; (b) S/De =0.05. 
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Figure 7. Comparison between theory and experiments under stratified conditions with packing and 
different electrode spacing. 

The concept of an equivalent liquid layer, [4], will be assessed by comparing [6] with 
measurements. Figure 6(a, b) shows excellent overall agreement between data and predictions for 
the case of the test section with no packing. Only at liquid fractions approaching unity is there a 
discrepancy between data and computations. This may be attributed to the inadequacy of the 
theory when very thick liquid layers are involved. Nevertheless, the agreement is surprisingly good, 
especially if one considers that some experimental error may be involved, e.g. in specifying the 
precise geometrical probe characteristics. 

In figure 7(a, b) a similar comparison is made between theory and data taken with two different 
probes in the section with packing. In both cases the normalized conductance falls between 
predictions based on Maxwell's [9] and on Begovich & Watson's [11] expressions for the effective 
electrical conductivity of the composite medium throughout the range of liquid fractions. At low 
liquid fractions, Maxwell's expression seems to perform better. However, it is difficult at present 
to recommend either one over the other. Moreover, recalling the uncertainty prevailing in the 
literature on the prediction of effective conductivity (in simpler geometries), one should be content 
with the fair agreement between the data and model predictions displayed by figure 7(a, b). 
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distribution. 
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Annular Liquid Pattern 

In static experiments this distribution pattern is simulated by placing solid Plexiglas rods of 
known diameter into the test section standing vertical. Experimental results for symmetric annular 
configurations are presented in figure 8, for a test section without and with packing. As expected, 
conductance tends to increase with increasing liquid fraction. The lines for the case without packing 
are the best fit through the data points. The lines for the case with packing are essentially those 
without packing, redrawn with the origin on the measured points at the maximum liquid fraction 
in the bed, i.e. 0.36. Experimental difficulties, to achieve uniformly close-packed conditions within 
the narrow annular gaps, is possibly the major cause of the discrepancy between estimates (solid 
line) and the data in the latter case. The data of figure 8 clearly show that, in the case of an annular 
liquid pattern, the sensitivity of closely spaced rings is inferior to that of rings spaced relatively 
far apart. 

Figure 9 presents comparisons of the data with theoretical predictions, for a test section with 
no packing. The expression based on an equivalent liquid layer, [2], [4] and [5], provides estimates 
of Kapp/Kmax in fair agreement with measurements. On the other hand, it is shown that excellent 
agreement is obtained with [23] developed in this paper. 

In the case of a test section with packing, figure 10 shows a comparison with predictions based 
on Maxwell's equation [9] and Begovich & Watson's equation [11] for effective conductivity. The 
former appears to fit better the data from electrodes placed 6 cm apart, and the latter data from 
electrodes 3 cm apart. However, no definitive statement can be made on the merits of either one 
of these expressions, in view of the possibility that the observed discrepancies (between the data 
and predictions) may be comparable to errors from non-uniform packing in the annulus. 

Uniformly Distributed Liquid Pattern 

Almost uniform liquid distribution is achieved by carrying out dynamic experiments in a trickle 
bed system, previously outlined. Trickling flow is usually considered to represent a uniform liquid 
distribution only when specific requirements are met. In particular, the bed aspect ratio must be 
> 20 to minimize wall effects and a liquid distributor together with sufficient column height must 
be employed to avoid liquid maldistribution (Herskowitz & Smith 1983). These conditions are 
satisfied in our experimental system. Evidence to further support the development of a uniform 
distribution in our setup is given by Herskowitz & Smith (1978), who did experiments with a variety 
of packings and bed dimensions in the trickling flow regime. Specchia et al. (1974) also reported 
uniform flow in the trickling regime for a packed bed almost the same as ours (14.1 cm i.d. tube 
packed with glass beads 0.6 cm dia). 
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Experiments are performed with two probes characterized by Dc = 3 and 9 cm, in order to 
examine whether the normalized conductance, Kapp/Km~, is indeed independent of the distance Dc 
between the ring electrodes, as indicated in the Theory section. Figure 11 shows that measurements 
made with both probes almost coincide, especially at small liquid fractions. Interestingly, the data 
fall along a curve which is roughly between similar curves based on Maxwell's (1881) and 
Bruggeman's (1935) expressions. Overall, neither of these expressions fits the measurements 
satisfactorily. For liquid fractions > ~ 0.12, Maxwell's relation is in fair agreement with the data. 
Bruggeman's expression appears to be satisfactory only at small liquid fractions; i.e. < ~0.06. 

Sensitivity of the Experimental Technique 
Radial non-uniformities 

To assess the sensitivity of the probes to radial non-uniformities, Plexiglas rods of various 
diameters are placed in the test section parallel with its main axis. The probe response is recorded 
while moving the rod from the center toward the wall of the test section. These experiments are 
carried out with only liquid in the test section. No such measurements are made with packing, as 
it is difficult to achieve a uniform voidage in the asymmetric annular spaces generated by locating 
the rod at various distances from the wall. This problem is particularly acute in the case of narrow 
annular gaps. 

Figure 12 depicts typical results of static experiments. The parameter a denotes the displacement 
of the center of the non-conducting rod from the center of the cross-section. The radius of the rod 
is r, so that a <~R-r and (r+a)/R <~ 1.0. In the case of an inner radius r = 2 c m  (which 
corresponds to a liquid fraction of 0.92), the two probes display a similar response (figure 12), 
differing from the symmetric annulus (a = 0) value by at most ~ 5% when a = R - r. Other data, 
not presented here, show that for an inner radius with r = 3 cm and a liquid fraction of 0.82, the 
maximum difference of I~pp/Kmax from that of the symmetric annulus is ~7%. 

It must be noted at this point that Andreussi et al. (1988) report (for at least one probe of similar 
geometry--their figure 7) that no appreciable effect was observed as the Plexiglas rod moved to 
the wall, even for narrower annular gaps corresponding to liquid fractions <0.2. This does not 
appear to be in accord with the trend of our measurements. Nevertheless, it is felt that in most 
cases the errors due to asymmetric annuli (on a percentage basis) may be within the overall accuracy 
of the experiments. 

It is pointed out here that the angular response of the probes does not warrant consideration due 
to the axial symmetry of the test section. This was verified experimentally (mainly to check the 
geometric accuracy of the experimental setup) by moving a non-conducting rod in the circumfer- 
ential direction, at a fixed radial position. 
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(b) 

O.5 

Axial non-uniformities 

The sensitivity of  the probes to non-uniformities in the axial direction is quite important for 
practical applications. To assess such a sensitivity of flat parallel electrodes, Coney (1973) obtained 
computational results for a number of different probe geometries by assuming step-changes of film 
thickness in the axial direction. 

The procedure employed in this work, to test for axial sensitivity, is to add known volumes of 
liquid into the test section (standing vertical), thus changing the gas-liquid interface position with 
respect to the probes. Figure 13(a, b) depicts relative conductance vs dimensionless distance from 
the plane of symmetry z/L = 0 of the test section (figure 3). The latter contains Plexiglas rods, 
creating symmetric annular liquid regions. A rather sharp increase is observed, to the nearly 
constant asymptotic value, which corresponds to probes well-covered (large z/L) with liquid. 
Furthermore, it is observed that electrodes spaced close together (e.g. De/D = 0,21) require slightly 
greater liquid coverage to reach the asymptotic value, as compared to electrodes spaced farther 
apart (e.g. De/D = 0.42). In general, it is noted that each electrode pair attains more than 90% of 
its asymptotic Kapp value when the annular liquid layer just covers both ring electrodes; i.e. z/L = 0 
for De/D = 0.21 and z/L = 0.15 for De/D = 0.42. The thinner the liquid layer the better the probe 
sensitivity, as is already known from the work of Asali et al. (1985). 
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Comparisons are made between measurements and predictions based on [23] developed here. 
The agreement is very satisfactory, especially if one considers the difficulties involved in specifying 
experimentally the exact location of the gas-liquid interface in the test section. Even for the worst 
case (a non-conducting cylinder with r = 5.3 cm) the discrepancy of ~ 2% falls within the accuracy 
of the measurements. 

The same qualitative results are obtained with packing in the test section, as shown in figure 14. 
However, the inability to achieve a truly uniform packing porosity in the annular space leads to 
measured values which are systematically higher than predicted on the basis of either Maxwell's 
or Bruggeman's effective conductivity expressions. 

DISCUSSION 

The study of ring-type conductance probes presented here shows that the latter are robust and 
quite sensitive for making measurements of liquid holdup in two- and three-phase systems. The 
measured cross-sectionally averaged conductance as a function of liquid fraction (in packed beds 
and pipes) is influenced by the pattern of liquid distribution, i.e. stratified, annular and uniform, 
examined in this work. Qualitatively, measurements with gas-liquid mixtures in pipes and packed 
beds are very similar. The above trends are in agreement with predictions from existing theory and 
from a new analytical solution for annular liquid distributions presented here. Some discrepancies 
observed, when quantitative comparisons are made between predictions and data for packed beds, 
are attributed to the uncertainties about effective conductivity in three-phase media and to packing 
non-uniformities at the cylindrical surfaces. 

Regarding potential practical applications, it is shown using data and theory that by proper 
selection of probe geometrical characteristics one can cope with various requirements, depending 
on the problem at hand. In particular, the technique is capable of discerning the aforementioned 
liquid distribution patterns (if the average liquid fraction is available), and of providing reliable 
cross-sectionally-averaged holdup data if the liquid pattern is known. However, in the latter case 
the use of calibration curves (obtained in static or dynamic type of tests) is required for precise 
holdup determination. 

Figure 15(a, b) supports the above arguments, showing conductance measurements made with 
three different liquid distribution patterns, without and with packing in the test section. Figure 
15(b) is perhaps of greater interest, suggesting that this technique may be employed for 
non-intrusive flow pattern recognition in packed beds. 

The dual-ring probe displays satisfactory spatial sensitivity in the axial direction; i.e. the signal 
is influenced more than ,-~ 90% by the liquid distribution inside the cylindrical segment ("slice") 
bounded by the electrodes, as shown in figures 13(a, b) and 14(a, b). This probe feature (in 
agreement with theoretical predictions, [23]) is obviously significant for applications. 

IJMF 18/5--C 
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Finally, it will be noted that the technique is already used in this laboratory to study detailed 
characteristics of two-phase flow in packed beds, with very satisfactory results. In one application, 
pulsing flow in a trickle bed is studied in which the two-phase mixture is considered to be fairly 
evenly distributed in the radial direction (e.g. Herskowitz & Smith 1983), with periodic disturbances 
in the axial direction. For the uniformly distributed liquid case, it is shown in figure 11 that the 
ring electrode spacing does not influence the measurements. Therefore, to achieve satisfactory 
spatial resolution, experiments in the pulsing flow regime are carried out with closely spaced 
electrodes (De = 3 cm); i.e. with ring spacing shorter than the length of the disturbance being 
investigated. The response of this pair of electrodes to holdup fluctuations is very good, as shown 
elsewhere (Tsochatzidis & Karabelas 1991), permitting the acquisition of accurate data. 

In another application, the liquid distribution in horizontal, axially rotated packed beds is 
studied (Karapantsios et al. 1991). Diagnosis of liquid distribution patterns is made possible with 
the dual-ring probe. Furthermore, rotation conditions leading to a nearly uniform liquid 
distribution are identified. 

Acknowledgements--Financial support by the Commission of European Communities (Contract No. JOUG- 
0005-C) and the General Secretariat for Research and Technology of Greece is gratefully acknowledged. 

REFERENCES 

ABRAMOWITZ, M. & STEGUN, I. A. 1964 Handbook of Mathematical Functions. Dover, 
New York. 

ANDREUSSI, P. & BENDIKSEN, K. 1989. An investigation of void fraction in liquid slugs for 
horizontal and inclined gas-liquid pipe flow. Int. J. Multiphase Flow 15, 937-946. 

ANDREUSSI, P., DI DONFRANCESCO, A. & MESSIA, M. 1988 An impedance method for the 
measurement of liquid hold-up in two phase flow. Int. J. Multiphase Flow 14, 777-785. 

ASALI, J. C., HANRATTY, Z. J. & ANDREUSSI, P. 1985 Interracial drag and film height for vertical 
annular flow. AIChE Jl 31, 895-902. 

BECKMANN, H. & MEWES, D. 1991 Experimental studies of countercurrent flow in inclined tubes. 
Presented at the Eur. Two-phase Flow Group Mtg, Rome, paper B1. 

BEGOVICH, J. M. &; WATSON, J. S. 1978 An electroconductivity technique for the measurement of 
axial variation of holdups in three-phase fluidized beds. AIChE Jl 24, 351-354. 

BEIMESCH, W. E. & KESSLER, D. P., 1971 Liquid-gas distribution measurements in the pulsing 
regime of two-phase concurrent flow in packed beds. AIChE Jl 17, l160-1165. 

BLOK, J. R. & DRINKENBURG, A. A. H. 1982 Hydrodynamic properties of pulses in two-phase 
downflow operated packed columns. Chem. Engng J. 25, 89-99. 

BLOK, J. R., VARKEVISSER, J. 8£ DRINKENBURG, A. A. H. 1983 Transition to pulsing flow, holdup 
and pressure drop in packed columns with cocurrent gas-liquid downflow. Chem. Engng Sci. 38, 
687-699. 

BROWN, R. C., ANDREUSSI, P. & ZANELLI, S. 1978 The use of wire probes for the measurement 
of liquid film thickness in annular gas-liquid flows. Can. J. Chem. Engng 56, 754-757. 

BRUGGEMAN, D. m. G. 1935 Calculation of different physical constants of heterogeneous 
substances. Annln Phys. 24, 636-679. 

CHASE, G. G., WILLIS, M. S. & KANNEL, J. 1990 Averaging volume size determination of 
electroconductive porosity probes. Int. J. Multiphase Flow 16, 103-112. 

CONEY, M. W. E. 1973 The theory and application of conductance probes for the measurement 
of liquid film thickness in two-phase flow. J. Phys. E: Scient. Instrum. 6, 903-910. 

DELHAYE, J. M., FAVREAU, C., SAIZ-JABARDO, J. M. & TOURNAIRE, A. 1987 Experimental 
investigation on the performance of impedance sensors with two and six electrodes for 
area-averaged void fraction measurements. In ANS Proc. 1987 Natn Heat Transfer Conf., 
pp. 234-239. 

HERSKOWITZ, M. & SMITH, J. M. 1978 Liquid distribution in trickle-bed reactors. AIChE Jl 24, 

439-450. 
HERSKOWlTZ, M. & SMITH, J. M. 1983 Trickle-bed reactors: a review. AIChE Jl 29, 1-18. 
HEWITT, G. F. 1978 Measurement of Two Phase Flow Parameters. Academic Press, London. 



CONDUCTANCE MEASUREMENTS IN GAS-LIQUID MIXTURES 667 

KARAPAIqTSIOS, T. D., PARAS, S. V. & KARABELAS, A. J. 1989 Statistical characteristics of free falling 
films at high Reynolds numbers. Int. J. Multiphase Flow 15, 1-21. 

KARAPANTSIOS, T. D., TSOCHATZIDIS, N. A. & KARABELAS, A. J. 1991 Liquid distribution in 
horizontal axially rotated packed beds. Presented at the AIChE A. Mtg, Los Angeles, CA, paper 
202h. 

MATUSZKIEWlCZ, A., FLAMAND, J. C. & BOURf/, J. A. 1987 The bubble-slug flow pattern transition 
and instabilities of void fraction waves. Int. J. Multiphase Flow 13, 199-217. 

MAXWELL, J. C. 1881 A Treatise on Electricity and Magnetism. Clarendon Press, Oxford. 
MERILO, M., DECHENE, R. L. & CICHOWLAS, W. M. 1977 Void fraction measurement with a rotating 

electric field conductance gauge. J. Heat Transfer 99, 330-332. 
NASR-EL-DIN, H., SHOOK, C. A. & COLWELL, J. 1987 A conductivity probe for measuring local 

concentrations in slurry systems. Int. J. Multiphase Flow 13, 365-378. 
NYDAL, O. J. & ANDREUSSI, P. 1991 Gas entrainment in a long liquid slug advancing in a near 

horizontal pipe. Int. J. Multiphase Flow 17, 179-189. 
PROST, C. 1967 Etude des fluctuations de la texture du liquide s'~coulant a contre-courant ou 

a co-courant du gaz dans un garnissage de colonne d'absorption. Chem. Engng Sci. 22, 
1283-1297. 

RAO, V. G. & DRINKENBURG, A. A. H. 1983 Pressure drop and hydrodynamic properties of 
pulses in two-phase gas-liquid downflow through packed columns. Can..l. Chem. Engng 61, 
158-167. 

SAIZ-JABARDO, J. M. & BOURL J. A. 1989 Experiments on void fraction waves. Int. ]. Multiphase 
Flow 15, 483-493. 

SPECCHIA, V., ROSSINI, A. & BALDI, G. 1974 Distribution and radial spread of liquid in two-phase 
cocurrent flows in a packed bed. Quad. Ing. Chim. Ital. 10, 171-182. 

TSOCHATZIDIS, N. A. & KARASELAS, A. J. 1991 Hydrodynamic properties of pulses in trickle beds. 
In Proc. 2rid Wld Conf. on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics 
(Edited by KEFI~R, J. F., SHAH, R. K. & GANIC, E. N.), pp. 1515-1522. Elsevier, Amsterdam. 

TURNER, J. C. R. 1976 Two-phase conductivity: the electrical conductance of liquid-fluidized beds 
of spheres. Chem. Engng Sci. 31, 487-492. 


